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which has a unique solution achievable by (1.201. 
It follows from Theorems 1-4 that in all the problems considered the sets of creepproblem 

solutions (including the solutions of the elasticity problems as special cases) are lineals 
of finite dimensionality for all possible values of the rheological characteristics. Con- 
sequently, the available arbitrariness in selecting the constants Gk.vk of the auxiliary 
elasticity problems essentially denetes the possibility of selecting different bases in this 
lineal. 
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A METHOD FOR THE AUTOMATIC EXTINCTION OF DIRECTIONAL FORCES 
BY MEANS OF BALL SELFBALANCERS* 

YU.V. AGAFONOV 

We consider the possible extinction of a directional harmonic force by 
means of two like selfbalacing systems (SBS) leading to rotation in two 
opposite directions with a frequency equal to the frequency of the acting 
force. A method of extinguishing circulating forces caused by rotor 
imperfections by means of ball SBS was described in ,f'l/. The action of 
directional forces, e.g., forces due to the operation of crank-and-rod 
mechanisms, is usually extinguished by means of a system of two constant 
unbalancers rotating in opposite directions. The latter have poor 
efficiency, however, if the amplitude or direction of the acting force 
can vary in time. In this case it is best to use a system of two un- 
balancers, whose values vary in accordance with the variation of the 
external disturbing force. 

The dynamic characteristics of our theoretical model (Fig.11 will be assumed to be the 
same in all directions at the location of the selfbalancers and to be given as an impedance 
g c. Let a directional harmonic force F= 2Do~cos(ot+q,) act on the system at an angle 'pa. 
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Notice that the action of the force F is equivalent to the action of two unbalancers u, --II,- 
D, rotating in opposite directions symmetrically about the direction given by the angle (I". 
In the general case Dr# D2 the action of these unbalancers is equivalent to the action of a 
directional force with amplitude 2D,w" (or ZD,o*) and an unbalancer ID--I), 1, rotating clock- 
wise (if D,>D,)or counterclockwise (if DI > D,). 

The equations of motion of the balls are /2/ 

Here and below, the subscript values n= 1 and i= l,...,N, refer to the balls which 
rotate counter-clockwise, and a= 2 and i=,V+l > . ., 2N to those rotating clockwise, TV is 
a small parameter, Cpi is the angle giving the position of the i-th ball in the SBS cage, N 
is the number of balls in each selfbalancer, = and y are the coordinates of the deviation of 
point 0 of the system from the equilibrium position, fi is the coefficient of viscous friction 
in the relative motion of the balls, and R is the radius of the races of the selfbalancers. 
The equations of the oscillations of point 0 of the system can be written as /l/ 

where m is the mass of one ball, and L and H are linear differential operators, defining the 
impedance 5,. 

By the principles of synchronization of dynamic systems /2/, the generating system of 
equations (p=Q corresponding to (1) and (2) has the solution 

DXl and Du, are the projections of the total unbalance 
counter-clockwise, and Dxz and Dy, are the same in the 

/ 

F, 

vector of the system, rotating 
clockwise case. 

Fig.1 Fig.2 

The values of the generating phases ai are found by equating to zero the generating 
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functions Pi, Where 

whence we obtain 

pPi =- 4;; - (Dzn sin [ai + (- 1)” A] - Dbl, cm [ai + (- i)” A]) 

The system of 2N equations pPi= 0 for the important practical case of two balls in 
each selfbalancer (N= 2) gives 16 different solutions for the positions of the balls in the 
selfbalancers, of which the only solution corresponding to the absence of oscillations of the 
system refers to the case Dzti=Dy,= 0, or 

a, - Xl = -_(az - Xl), cos (a1 - Xl) = --0,/(2&z) (5) 
a3 - xz = -(% - xz), cos (aa - ~2) = -DJ(ZmR) 

It can be seen from (5) that each selfbalancer compensates only the component of force 
F which rotates in the same direction as the corresponding SBS cage. 

The common condition that the equilibrium positions of the balls be asymptotically stable 
is that the real parts of the roots of the fourth degree equation in z /2/ 

det (aPJac+ - &z) = 0; i, k = 1, . . ., 4 (6) 

be negative. We can show by the Routh-Hurwitz method that the position of the balls given by 
(5) under the condition D,<2mR is the only stable position in the range of rotation 
frequencies defined by the criterion 

Im(&+ j2wmN'))O (7) 

which is the same as the criterion obtained in /l/ for the case of a single selfbalancer for 
extinguishing vibrations due to unbalance of a rotating rotor. 

This conclusion was checked experimentally for the elementary case of a system consisting 
of a body on an isotropic elastic suspension (Fig.2) with natural frequency of oscillation 
0,; condition (7) corresponds to the inequality w> 00. 
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CONTROL OF THE SPECTRUM OF MULTIDIMENSIONAL OSCILLATORY OBJECTS* 

V.A. BRUSIN 

The solution is obtained in closed form of the problem of shifting in the 
complex plane any pairs by simple complex conjugate eigenvectors of the 
linear part of a controlled object by means of linear output variable 
feedbacks. 

Consider the linear controlled object described by the equations 

z'=Az+Bu, y=Cz U) 

where I is the n-dimensional state vector, y is the m-dimensional output signal vector, u 
is the r-dimensional control vector, and A,B,C are IZ x n, n X r, and m X n matricesrespect- 
ively. 

A problem in stability and control theory concerns the control of the spectrum of a 
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